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Non-linear, singular oscillator systems arise in various areas of the engineering and
physical sciences. In particular, they occur in the areas of mechanical oscillations [8],
electronic circuits [4, 7] and plasma physics [2]. The corresponding model ordinary
differential equations (ODE) have been extensively investigated by Bota and
Mickens [1, 4, 5]. A prototypical form for such ODE’s is the WCM oscillator equation
[4, 7],

ẍ+ x= o$m− x2

1− x2%ẋ, (1)

where e and m are the parameters that satisfy the constraints

0Q oW 1, 0Q mQ 1. (2)

Note that the phase space (x, y) of the system, modelled by equation (1), is the strip

=x=Q 1, −aQ yQ+a, (3)

where y0 dx/dt. For purposes of both numerical and mathematical analysis, it is more
convenient to be able to use all of the phase space rather than the restricted region given
by equation (3). The purpose of this Letter is to show that a non-linear transformation
can be made from the variables (x, y) to new variables (u, w) such that in the new variables
the whole phase space is used; i.e.,

−aQ uQ+a, −aQwQ+a. (4)

An advantage of the new variables is that they may be easily used to obtain information
about possible solution behaviors by application of the qualitative theory of differential
equations [6]. The use of only the transformation from x to u leads to a second order ODE
which is easily seen to be a modified form of the van der Pol oscillator equation. At this
point an approximation to the analytic solutions can be constructed by use of some
procedure such as the method of harmonic balance [3]. The application of the inverse
transformation, from u to x, then gives an approximate to the original singular oscillator
equation.

In the following discussion, only equation (1) is considered; however, it should be clear
from the presentation how to extend these results to other non-linear, singular systems
modelled by this type of ODE.

First, consider the transformation (x, y):(u, w), where

x=
u

z1+ u2
, y=w. (5)
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This transforms the strip given by equation (3) into the whole plane, as indicated by
equation (4). Writing equation (1) in system form [6] gives two coupled ordinary
differential equations

dx
dt

= y,
dy
dt

=−x+ o0m− x2

1− x21y. (6a, b)

From equation (5), it follows that

dx
dt

=
u̇

[1+ u2]3/2 = y=w, (7)

and

du/dt=[1+ u2]3/2w. (8)

Likewise, equation (6b) becomes, under the transformation of equation (5), the expression

dw
dt

=−
u

z1+ u2
+ o[m−(1− m)u2]w. (9)

Equations (8) and (9) are the new system ODE’s in the transformed phase space of
variables (u, w). The trajectories in this phase space, w=w(u), are solutions to the first
order ODE (6),

dw
du

=6− u

z1+ u2
+ o[m−(1− m)u2]w7>[(1+ u2)3/2w]. (10)

Using the fact that 0Q o and 0Q mQ 1, it can easily be shown that the phase space
structure of equation (10) is topologically the same as that for the van der Pol equation,

ü+ u= ō(1− u2)u̇, (11)

where the constant ōq 0, and the system equations for (11) are

du/dt=w, dw/dt=−u+ ō(1− u2)w. (12)

(see Mickens [6, section I.3.3]). This immediately implies that equations (8) and (9), and
by use of the inverse transformation, equation (1), have a unique limit-cycle. Previous
attempts to demonstrate this result required more elaborate procedures [4].

A second way to proceed is to apply only the transformation

x=
u

z1+ u2
(13)

directly to equation (1). Doing this gives the result

ẋ=
u̇

(1+ u)3/2 , ẍ=
ü(1+ u2)−3uu̇2

(1+ u2)5/2 , (14)

which, when substituted into equation (1) yields, after some simplification, the equation

ü+$(1+ u2)2 −3u̇2

1+ u2 %u= o(1− u)$0 m

1− m1− u2%u̇, (15)

which is a modified form of the van der Pol equation.
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An analytic approximation to the limit-cycle solution of equation (15) can be calculated
by the use of the method of harmonic balance [3]. The first approximation is

u1(t)=A cos (vt), (16)

where the amplitude A and angular frequency are to be determined by substitution of
equation (16) into equation (15) and setting the coefficients of the lowest harmonics,
cos (vt) and sin (vt), equal to zero, and then solving for A and v. Carrying out this series
of steps gives

A=20X m

1−2m1, v=X 1+2m+2m2

(1−2m)(1+4m)
. (17a, b)

Further analysis shows that the parameter m has to satisfy the restriction

0Q mQ 1/4. (18)

(The details as to how this inequality is obtained can be found in Mickens [4].) Substitution
of equation (16) into equation (13), where A and v are taken from equations (17), gives
the following approximation to the limit-cycle solution of equation (1):

x1(t)= [A cos (vt)]>X01+
A2

2 1+0A2

2 1 cos (2vt) . (19)

In actual applications m is rather small; i.e.,

0Q mE 1/4. (20)

This fact implies that

A=2zm+O(m3/2), v=1+O(m). (21)

Thus, for this situation, equation (19) becomes

x1(t)=2zm cos t+O(m3/2). (22)

This is exactly the result obtained previously by Bota and Mickens [1] and Mickens [4].
Note that the approximate solution given by equation (19) automatically incorporates
higher order corrections to x(t). This clearly illustrates the major advantage of
transforming to the new variables, constructing a harmonic balance solution and then
transforming back to the original variables.

In summary, a method has been presented to regularize singular ODE’s that occur in
the modelling of certain non-linear oscillating systems. The procedure transforms the
singular points out to the boundary at infinity; consequently, the usual methods of
numerical, phase space and analytic analysis can be directly applied to the new ODE,
which does not contain singularities.
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